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Useful Links
For those not familiar with all the industry abbreviations please find full name of 
those used in this presentation below:

• ALP: Annual Load Profile

• AUGE: Allocation of Unidentified Gas Expert

• CDSP: Central Data Services Provider

• CWV: Composite Weather Variable

• DAF: Daily Adjustment Factor

• DESC: Demand Estimation Sub Committee

• DM: Daily Metered

• DOW: Day of Week 

• EUC: End User Category

• ILF: Indicative Load Factor

• LDZ: Local Distribution Zone

• MAPE: Mean Absolute Percentage Error

• MPE: Mean Percentage Error

• NDM: Non-Daily Metered

• PLF: Peak Load Factor

• SNCWV: Seasonal Normal Composite Weather Variable

• SND: Seasonal Normal Demand

• UIG: Unidentified Gas

• UNC: Uniform Network Code

• WAR: Winter Annual Ratio

• WCF: Weather Correction Factor

• WSENS: Weather Sensitivity

• Uniform Network Code Section H 

• Demand Estimation Methodology

• Demand Modelling Approach (2021 version)

• UIG Task Force Findings

• NDM Algorithm Consultation Material 

• UNC Request for 0754R Workgroup

Glossary
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https://www.gasgovernance.co.uk/sites/default/files/ggf/page/2020-07/10%20TPD%20Section%20H%20-%20Demand%20Estimation%20and%20Demand%20Forecasting_0.pdf
https://www.gasgovernance.co.uk/sites/default/files/ggf/page/2019-04/Demand%20Estimation%20UNC%20Related%20Document%20v1.4.pdf
https://www.gasgovernance.co.uk/sites/default/files/ggf/2021-02/Modelling%20Approach%202021_Final.pdf
https://www.xoserve.com/services/issue-management/unidentified-gas-uig/#task-force-findings-etc
https://www.gasgovernance.co.uk/DESC/Consultation
https://www.gasgovernance.co.uk/sites/default/files/ggf/book/2021-02/Request%200754R%20v1.0%20.pdf


Background

• UIG Task Force produced a number of 
recommendations to help reduce temporary UIG 
levels/volatility. This included findings associated 
with the modelling error within the NDM Algorithm 

• DESC is responsible for the NDM Algorithm (UNC 
Section H) and has an obligation to review it every 3 
years (UNC H 2.2.2)

• Prior to moving forward with the above a 
consultation was performed during Q4 of 2020 to 
assess the levels of support for making 
improvements to the NDM Algorithm

• A more detailed view of the background to this 
Workgroup and current state overview is provided in 
the March meeting papers here

Rationale for workgroup

• Supports DESC’s UNC obligation to review the 
NDM Algorithm

• UIG Task Force findings will be explored and 
progressed  

• Clear industry support for investigating 
advanced analytical approaches 

• A Workgroup maintains focus and increases 
visibility across the industry

• Improved NDM Allocation will result in a 
reduction in UIG volatility and subsequent 
Meter Point reconciliation/UIG volumes 
(temporary)

Workgroup 0754R
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https://www.gasgovernance.co.uk/sites/default/files/ggf/2021-03/Workgroup_0754R_Outline_230321.pdf


Workgroup 0754R: Investigation Areas

• The  proposed areas of investigation
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Workgroup 0754R: Area 1 Development Approach
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• Reminder of the LDZ and EUCs for trialing the approaches

Area 1: Test EUCs
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Meeting 5 Re-cap 

(30th November 2021)



Meeting 5 Key Discussion Points

The main headlines from meeting 5 of 754R were…

• Provided an overview and background of the Advanced Analytics approaches being trialled, 
namely Neural Network (NN) and Gradient Boosting (GB). These approaches and their 
models have been labelled as follows:

– NNGLM – Neural Network Generalised Linear Model (best result)

– GBASE – Gradient Boosted model

• Discussed Model Verification methods

• Presented methodology for calculation of Daily Adjustment Factor (DAF), one of the key 
outputs from the Demand modelling process

• Provided visual of ALP and DAF profiles for test EUCs

• Provided initial Mean Average Percentage Error (MAPE) for test EUCs
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Area 1: 

Trial Alternative Approaches to Deriving SNDt

Indicative Load Factors



Indicative Load Factor: Development

Background:

• Indicative Load Factor (ILF) is a measure of the weather sensitivity of the model and 
provides a very important role in the assessment of demand models.

• It enables comparisons between models

– For EUCs with Winter Annual Ratios (WAR) bands it highlights distinctions between 
the models.

– Across years can highlight changes in an EUC’s profile 

Objective: 

• Can we calculate an Indicative Load Factor (ILF) for the new approaches?
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Indicative Load Factor: Calculation

• The ILF Calculation is as follows:

ILF = Average Demand / Peak Demand

• The Average Demand has been calculated as the mean of the predicted Seasonal Normal 
Demand. 

• The Peak Demand is determined using 

– the Peak 1 in 20 CWV, which is a statistically calculated value (95% level) of the extreme 
cold weather in the gas industry history (from 1960). The values and further details are 
available in  section 11 of the NDM Algorithm booklet

– The dummy variables have been set to reflect the calculation taking place for “a non-
holiday Monday to Thursday in January”

• HOL_CODES set to ‘NONE’

• MONTH = ‘JAN’

• WKDAY_TYPE =‘MtoTh’
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Indicative Load Factor: Results

• This table shows the initial values of the ILF calculated for the new approaches.

• Highlighted are some of the ILFs which are 

materially different from the live ILF

Blue – small difference

Yellow – materially different ILF 

• The Gradient boost model produced a materially 

different ILF – which is being investigated to 

understand the drivers for the difference

LDZ_EUC Live NNGLM GBASE

NW01BND 32.34 31.85 39.21

NW02BNI 33.57 40.21 51.65

NW05B 41.07 44.45 54.52

SE01BND 31.08 30.03 41.57

SE02BNI 33.15 37.75 50.11

SE05B 43.76 43.94 56.66
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Indicative Load Factor: GB investigation

• Initial investigation of the differences in the ILF has shown:

– Average Demand consistent for all Models

– Peak Demand materially different for all GBASE results and NNGLM 

NW02BNI.

• Next steps to investigate why the peak is so different

– A theory is that the Peak 1 in 20 CWV is quite low a value and the 

training data has very little observations that are even close to this level.

• The down side of Machine Learning (M/L) is the ‘black box’ nature 

and in some cases the  influences may not be fully explainable.
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Indicative Load Factor: Summary

• Conclusion – Yes, we can calculate ILFs however there is outstanding 

investigation into their levels especially Gradient Boosted approach.

• It should be noted if we cannot calculate an ILF for a particular M/L 

approach or can calculate it but cannot understand why it varies so much 

from the existing values then the approach is unlikely to be taken forward. 

• While the focus is on ALP and DAFs to reducing impact on Modelling Error 

and also Temporary UIG, there are other downstream impacts such as on 

the Peak Load Factors 
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Area 1: 

Trial Alternative Approaches to Deriving SNDt

Comparison with Live Models



Comparison with Live Models - Objective

• In meeting 5, high level results were provided for the new approaches

• This section explores the results in more detail

• This is to try and understand the strength and weaknesses of each approach and where they can 
be optimized

• This involved assessing trends by 
– Day of the Week (DOW)

– Month

– Holidays

• Reminder: 
– We are training using sample data from April 2017 to March 2020, excluding COVID affected days 

where possible

– Testing is against October 2019 to September 2020 at present. COVID impacts results from end of 
March 2020
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MAPE and MPE Calculations

• Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy of a forecasting 
method

– It is calculated as Absolute(Actual Energy – Predicted Energy) / Actual Energy

– The lower the MAPE value, the closer the prediction was to the actual value. For example, a 
MAPE of 3% means that, on average, the forecast is out by 3%.

• Mean Percentage Error (MPE) is a measure of the bias in the forecasting method

– It is calculated as (Predicted Energy – Actual Energy) / Actual Energy

– Where Actual Energy > Predicted Energy the models have under allocated, 
e.g. if MPE is -2% the model has under allocated by 2%

– Where Actual Energy < Predicted Energy the models have over allocated 
e.g. if MPE is 2% the model has over allocated by 2%

• When comparing models, the preference is for the MPE and MAPE to be closer to zero
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Initial MAPE 01BND

• Encouraging initial results with 

both machine learning models 

quite close to the current model

• Refining the ALP and DAF will 

hopefully improve this further
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Monthly Trend MPE 

01BND
• The charts show the MPE error by 

month and also the direction of 
difference

• For NW 
• Live model was closer to zero in 8/12 

months 

• NNGLM for 4/12 and 

• GBASE 0/12

• For SE
• Live model closer to zero in 6/12 

months

• NNGLM for 2/12 and 

• GBASE for 4/12

• MPE difference is larger in summer 
months

• SE for Aug 2020 stands out 
compared to the trends

MPE: negative = under allocation ; positive over allocation
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Day of the Week 

Trend NW01BND
• The MPE percentages are 

predominately positive. 

• All the GBASE values are positive 
(showing over allocation) 

• Both the live and NNGLM model 
profiles resulted in a negative MPE 
for a Saturday (under allocation)

• The MAPE would tend to favour the 
Live model, as for this measure it is 
closest to zero in all DOW categories

MPE: negative = under allocation ; positive over allocation
21



Day of the Week 

Trend SE01BND

• The MPE percentages show 

some variation between the 

DOW. 

• The Saturday MPE results for 

Live and NNGLM model stand 

out as being negative (under 

allocation – similar to LDZ NW)

• The MAPE shows all models 

are fairly close. 

MPE: negative = under allocation ; positive over allocation
22



Holiday Code Trend 

MPE 01BND
• The charts show the MPE error by for 

each of the Holiday Codes

• The results were mixed

• The live model seemed to perform 
better over the Christmas holiday 
periods

• Easter was particular difficult for the 
models, especially the weekdays (code 
8)

• SE seems to have an under allocation 
for the Christmas period but over 
allocation for the other holiday periods

MPE: negative = under allocation ; positive over allocation
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Initial MAPE 02BNI

• Note: These datasets have COVID 
impacted days between April 2020 to 
September 2020 which explains the poor 
percentages for all the models

• The Gradient Boosted model is better 
than Neural Network for NW but not SE

• The live Model is still giving the best 
results for both areas
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Monthly Trend MPE 

02BNI
• The charts show the MPE 

error by month

• For NW 
• Live model was closer to zero in 

7/12 months 

• NNGLM for 1/12 and 

• GBASE 5/12

• For SE
• Live model closer to zero in 8/12 

months

• NNGLM for 2/12 and 

• GBASE for 2/12

• MPE difference is larger in 
summer months

MPE: negative = under allocation ; positive over allocation
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Day of the Week 

Trend NW02BNI
• The MPE chart suggests an 

under allocation in terms of the 
DOW trends which is unusual

• We are currently identifying 
months where the under 
allocation is significant to 
further investigate. 

• A scenario was identified in 
Algorithm Performance where 
the Sample AQ used in 
analysis was COVID impacted 
and skewed some of the 
analysis

MPE: negative = under allocation ; positive over allocation
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Day of the Week 

Trend SE02BNI

• The MPE chart suggests an 

under allocation in terms of the 

DOW trends which is unusual

• We are currently identifying 

months where the under 

allocation is significant to 

further investigate. 

MPE: negative = under allocation ; positive over allocation
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Holiday Code Trend 

MPE 02BNI
• The charts show the MPE error by 

for each of the Holiday Codes

• The results were mixed

• Each of the models showed as the 
better model for different holiday 
periods

• The  models tended to over allocate 
for Easter(6,7,8) and both sets of 
May Holiday periods (9,10,11,12)

MPE: negative = under allocation ; positive over allocation
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Initial MAPE 05B

• Note: These dataset have COVID impacted 
days between April 2020 to September 2020 
which explains the poor percentages for all 
the models

• The Neural Network model is quite close to 
the live model for both areas 

• The Neural Network model is slightly better 
for NW and better for Summer in SE

• Gradient Boosted results were not as good 
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Monthly Trend MPE 

05B
• The charts show the MPE error by 

month

• For NW 
• Live model was closer to zero in 8/12 

months 

• NNGLM for 3/12 and 

• GBASE 1/12

• For SE
• Live model closer to zero in 7/12 

months

• NNGLM for 2/12 and 

• GBASE for 3/12

• MPE difference is larger in 
summer months

MPE: negative = under allocation ; positive over allocation
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Day of the Week 

Trend NW05B
• The MPE chart suggests an 

under allocation in terms of 
the DOW trends which is 
unusual

• We are currently identifying 
months where the under 
allocation is significant to 
further investigate. 

MPE: negative = under allocation ; positive over allocation
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Day of the Week 

Trend SE05B
• The MPE chart suggests an under 

allocation in terms of the DOW 
trends which is unusual

• We are currently identifying 
months where the under allocation 
is significant to further investigate. 

MPE: negative = under allocation ; positive over allocation
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Holiday Code 

Trend MPE 05B
• The charts show the MPE error 

by for each of the Holiday 
Codes

• Christmas holidays tended to 
be an over allocation where as 
the other holidays were under 
allocations

• For NW Christmas day, the 
GBASE model was a significant 
under allocation when 
compared to the other models

MPE: negative = under allocation ; positive over allocation
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Area 1 

Understanding the Principles of the M/L models



Understanding the Models - Objective

Objective: 

• To look closer at the approaches and the mechanics of the models to get a better 

understanding of how they work.

• To understand the influencing factors in order to improve and optimise the models

• To understand and interpret the results

– For example to investigate the ILF differences highlighted earlier 
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Understanding the Models 

• For Workgroup 0754, in addition to the Live Model, we have 

produced

– Neural Network and 

– Gradient Boosting models

• As a control we have also ran a Regression Model 

– Regression is the model currently being used and arguably most 

understood
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Understanding the Models – Neural Networks

• In meeting 5 we provided a 
high level overview of the 
different models.

• This diagram shows the 
principle of Neural Networks

• We tried multiple NN 
approaches

• The ‘Generalised Linear 
Model (GLM) approach 
produced the best results 
(referred to as NNGLM)
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Understanding the Models - Comparison

• The comparison produced some interesting results

• The Neural Network model produced identical results as the 
Regression model

• The values matched for

– Predicted Values (SNDt)

– Indicative Load Factors

– And this was for all the test EUCs
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Understanding the Models - Reg vs NNGLM

• The Chart shows the predicted values for EUC NW01BND

• The plot is given as y=x or in this case NNGLM = Reg 

• Investigating the underlying coefficients and weightings highlighted 

the approaches were the very similar.

• The main difference was

the way the Neural 

Network model 

categorised and set 

the dummy variables.
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Understand the Models – Key Influences (1)

• The chart shows Neural Network
coefficients / weights for EUC
NW01BND for the Xmas
period

• This is the building blocks of the 
predicted Seasonal Normal 
demands and shows the interactions 
between the variables

• The NN GLM model takes the form:

Y=Intercept + CWV effect + dummy variables * weight
– Blue = Intercept 

– Grey = CWV influence

• Other colours represent DOW, Holiday, Month weightings 
(legend has not been added as it the number of components are too small to read)
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Understand the Models – Key Influences (2)

• The key inputs to the demand
shape (and those that have
the most influence) are:

– Intercept

– CWV influence

• As a contrast this chart shows the 
influence of DOW, Holiday and 
Month variables across a Gas Year

• To optimise the models :
– One focus will be to look at the demands and CWV with an option to add extra years of data to 

the training datasets.

– Look at how to influence the trends with further / other dummy variables

• Any suggestions of dummy variables welcome
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Introduction to 

Area 2: Improve Validation processes



Objective & Background

• Explore the use of 
advanced analytics 
techniques to develop and 
improve validation process 
prior to modelling

• Identify potential weakness, 
development opportunities 
and make 
recommendations which 
link to evidence of 
reduction in NDM modelling 
error.
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Modelling Process Flow

• In this Modelling process flow the key 
inputs are:
– NDM Sample consumption data.

– Weather data

– Supply Point register

• Poor data leads to poor models and 
interpretation

• Supply Point Register is provided from the 
Shippers

• Weather data is consistent

• Our focus is on ensuring the validation of 
the Sample data produces quality inputs for 
the models
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Sample data - Task Force Findings

• The UIG task force produced an 

assessment of Sample MPRs  

• These charts are a selection of 

demand patterns that:

– Passed validation

– Were believed to be domestic

• Visually they do not seem to match 

a typical domestic profile.
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Note the reference numbers above are 
anonymized IDs and not MPRs



Sample Data - Intended plan

• Utilise Machine Learning (M/L) to enhance 
our existing validation routines (see table)

– To help identify suspicious demand 
patterns in assessing sample MPRs

• Infilling:

– Assess whether M/L can assist with infilling 
of missing data

• We are going to investigate:

– Techniques for identifying demand patterns 
and difference including:

• Uncertainty estimation (as suggested by the 
task force)

• Others to be determined
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Conclusion and Next Steps

Conclusion:

• ILFs can be calculated but further 
analysis needed for non linear model 
suitability

• Time has been spent on understanding 
the models their characteristics and 
which elements are influencing the shape 
of demands that are produced

• Further analysis and understanding 
required if we are to succeed in 
identifying significant improvements

Next Steps:

• Area 1: Investigate Peak Demand 
calculation for GB model

• Area 1: Investigate the Day of the week 
trends for the 02BNI and 05B datasets 
and test it against non-covid datasets.

• Area 1: Try other dummy variables

• Area 2: Investigate methods to support 
validation identifying suspicious demand 
patterns

• Next meeting preparation
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Workgroup 0754R: Timeline
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Thank you


