

Shrinkage Forum

Monday 27 June 2011, 31 Homer Road

Leakage Model

Leakage Model

- Methodology developed in the early 1990s
- Currently a spreadsheet model
- Five main elements
 - LP Leakage
 - MP Leakage
 - AGI Leakage
 - AGI Venting
 - Interference Damage

Leakage Model Elements & Main Input Parameters

Leakage Proportions (National Grid only)

Low Pressure Leakage Model

- Approximately 80% of all leakage
- Leakage rates for 11 diameter/material bands, based on a national survey carried out in 2002/03
- > 2000 low pressure networks nationally
 - Average System Pressure determined via recorded source pressure data and network analysis
 - MEG Saturation (where used) determined from recorded data and network analysis
 - Pipe asset lengths (replacement of metallic mains has greatest impact)
 - No. of services

Low Pressure Mains (1)

- For Ductile Iron, Steel and PE Pipes
 - (Rate x Length x ASP)/Reference Pressure (30mbarg)
- For Pit Cast Iron and Spun Cast Iron pipes
 - Split into Lead Yarn jointed treated by MEG, Lead Yarn jointed not treated by MEG and non-Lead Yarn Jointed
 - Assumption 88.5% Pit Cast and 18.5% Spun Cast are Lead Yarn jointed
 - [(Rate x Length x LY% x Treated% x ASP)/Reference Pressure] x [MEG Factor/ Reference MEG Factor]
 - [(Rate x Length x LY% x (1-Treated%) x ASP)/Reference Pressure] / [Reference MEG Factor]
 - (Rate x Length x (1-LY%) x ASP)/Reference Pressure

Low Pressure Mains (2)

m³/annum/km					
@30mbarg	D1	D2	D3	D4	D5
MATERIAL	<=3"	4"-5"	6"-7"	8"-11"	>=12"
PE	63.51				
Steel	3416.34	3854.34			
Ductile	719.18		576.40		
Pit Cast	2407.21	1639.85	2525.47	2203.98	7463.40
Spun Cast	1075.71				

- **2002/03 NLT**
- 849 Tests
- 11 Categories from a combination of up to 5 Diameter Bands across the 5 Material Types
- 1990s test results used to determine sample size

Low Pressure Mains (3)

- Average System Pressure
 - Determined via Network Analysis
 - LP Sources set at average annual pressure
 - Determined by profiling data, data loggers, clock settings etc
 - Demand set at 25% 1 in 20 Peak Six Minute Demand (typical average demand level experienced over the year)
 - ASP = length weighted average of the average pressure in each pipe in the network

Low Pressure Mains (4)

MEG

- Monoethylene glycol, used to treat lead yarn jointed mains, which applies Cast Iron pipes only (Pit and Spun)
- Saturation is measured throughout the year
- % of cast iron treated determined using the same network analysis model as used for determining ASP
- Cast Iron leakage rates are deemed applicable to a MEG saturation level of 25%, which reflects a 20% reduction in leakage.
 - If less or no MEG is used, leakage rates are uplifted
 - if more MEG is used, leakage rates are reduced

Low Pressure Mains (5)

Low Pressure Mains (6)

- Example Calculation:
 - <=3" Pit Cast; Original Length = 5.163; Proportion of CI treated = 75%; MEG Saturation = 40%; ASP = 30mbarg</p>
 - Lead Yarn Length (5.163 x 88.5%) = 4.569
 - Lead Yarn Treated Length (4.569 x 75%) = 3.427
 - Lead Yarn Untreated Length (4.569 3.427) = 1.142
 - Non Lead Yarn Length (5.163 x (1-88.5%)) = 0.594

Low Pressure Mains (7)

- Example Calculation continued:
 - Lead Yarn Treated Length Leakage =
 - ■3.427km
 - x 2407.21 m³/km/annum@30mbarg [Leakage Rate for D1 Pit Cast]
 - x 30mbarg [ASP]
 - / 30mbarg [Ref Pressure]
 - x 69.78% [MEG Factor Associated with achieved 40% MEG Saturation]
 - 79.86% [MEG Factor Associated with the reference 25% MEG Saturation]
 - =7,208scm

Low Pressure Mains (8)

- Example Calculation continued:
 - Lead Yarn Untreated Length Leakage =
 - 1.142km
 - x 2407.21 m³/km/annum@30mbarg [Leakage Rate for D1 Pit Cast]
 - x 30mbarg [ASP]
 - / 30mbarg [Ref Pressure]
 - 79.86% [MEG Factor Associated with the reference 25% MEG Saturation]
 - **=** =3,443scm

Low Pressure Mains (9)

- Example Calculation continued:
 - Non-Lead Yarn Length Leakage =
 - 0.594km
 - x 2407.21 m³/km/annum@30mbarg [Leakage Rate for D1 Pit Cast]
 - x 30mbarg [ASP]
 - 30mbarg [Reference Pressure]
 - ■=1,429scm

Low Pressure Services (1)

- Methodology updated in 2009
- Old methodology assumed fixed relative proportion of metallic and plastic services
 - Many metallic services have been replaced since original assumptions
- New methodology uses the old model output for 2006/07 to fix a baseline for the number of metallic services and actual service replacement numbers are used to estimate the current population

Low Pressure Services (2)

- (No. Services x Rate x ASP)/Reference Pressure
- 2002/03 leakage tests determined that only connections to metallic mains had any significant leakage

TYPE	Rate m³/annum/ service@30mbarg
Metal \$ - Metal	10.592
Metal \$ - PE	0
PE \$ - Metal	2.194
PE\$-PE	0

Low Pressure Services (3)

- Determination of the number of services example
- Total No. Services = 60,000; Baseline No. Metallic Services = 24,000; cumulative annual replacement = 12,000, PE Proportion of Network = 0.48; Network as % of LDZ = 60%
- Metal services
 - Baseline No. (%LDZ x No. Replaced in LDZ)
 - 24,000 (60% x 12,000)
 - **2**4,000 7200 = 16,800
- PE Services
 - Total No services Excluded Services Metallic Services
 - \bullet 60,000 3,002 16,800 = 40,198

Low Pressure Services (4)

- PE to PE
 - No. PE Services x PE proportion of network
 - 40,198 x 0.48 = 19,186
- PE to Metal
 - No. PE Services No. PE to PE
 - **4**0,198 19,186 = 21,012
- Metal to PE
 - No. Metallic Services x 0.1807097 (fixed assumption)
 - 16,800 x 0.1807097 = 3,143
- Metal to Metal
 - No. Metallic Services No. Metal to PE
 - 16,800 3,143 = 13,657

Low Pressure General (1)

- Excluded Pipe Lengths
 - Reflects small <u>isolated</u> sections of a larger network that tend to be all PE and operate at higher pressure
 - Pipes are assumed to operate at the same pressure as the length weighted average pressure of the other all-PE networks in the LDZ
 - PE Pipe Leakage is calculated as:
 - [Network PE Leakage] + [Excluded PE Leakage]
 - [(Total PE Length Excluded Length) x PE Rate x Network ASP / Reference Pressure] + [Excluded Length x PE Rate x All-PE ASP / Reference Pressure]
- Similarly, excluded service leakage is calculated at the All-PE ASP; however, these are deemed PE to PE services and, therefore, have a zero leakage rate

Low Pressure General (2)

NONET Networks

- These refer to pipe lengths that are not associated with a specific network and are included for completeness
- Metallic pipes in the NONET category are deemed to operate at the length weighted average system pressure of the other mixed material networks in the LDZ
- PE pipes in the NONET category are deemed to operate at the length weighted average system pressure of the All-PE networks in the LDZ. If there are no All-PE networks in the, the pressure defaults to that for the mixed material networks

Medium Pressure Leakage Model

- Approximately 8% of all leakage
- Leakage Rate x Length
- LP Leakage Rates used
 - MP Pit Cast deemed to leak at the same rate as Spun Cast. LP Pit Cast higher because of predominance of lead yarn jointing, which was not generally used for MP
 - Number of reported escapes per km of iron main generally lower, but of a similar order, for MP than LP. Therefore, it is assumed that there is a similar level of leakage per km.

AGI Leakage Model

- Approximately 7% of all leakage
- 5 leakage rates for AGI asset types, based on a national survey carried out in 2002/03:
 - Holders
 - NTS Offtakes
 - LTS Offtakes
 - District Governors
 - Service Governors
- Leakage = Number of Assets x Rate

AGI Venting Model

- Approximately 5% of all leakage
- Fixed values based on a national value from the 2002/03 AGI leakage test report apportioned by relative number of 'venting' AGI asset at time of Network Sales
 - Original source for data 1994 Watt Committee Report

Interference Damage Model (1)

- Approximately <0.5% of all leakage</p>
- Based on:
 - >500kg release incidents
 - Actual release value where recorded/estimated
 - Else, No. Incidents x 500kg
 - Number other recorded incidents
 - Split by LP/MP (95/5)
 - Split by Puncture/Fracture (50/50)
 - Assumed leakage rates and response/fix times

Interference Damage Model (2)

- All Rates and response times are fixed within the model
- Severed Services
 - No Service Incidents/2 x Rate (17m³/hr) x Response/fix time (2hr)
- Punctured Services
 - No Service Incidents/2 x Rate (5.66m³/hr) x Response/fix time (2hr)
- Service leakage rates determined for by an experimental rig operating at 25mbarg
- Low Pressure Incidents
 - No Mains Incidents x 95% x Rate (42.45m³/hr) x response/fix time (235 minutes)
- Medium Pressure Incidents
 - No Mains Incidents x 5% x Rate (283m³/hr) x response/fix time (235 minutes)
- Mains leakage rates calculated for a 1" hole at 25mbarg operating pressure for LP and 2barg for MP