

respect > commitment > teamwork

Updated Simulation of Unidentified Gas levels

DESC 16th Feb 2016

Introduction

- There is a new concept of daily Unidentified Gas (UG) in the post Nexus regime
- We last presented our analysis on UG to DESC on 19th May 2015
- For background info on UG please refer to the previous presentation
- This presentation analyses updated UG results using the most recent data

2

Data used in the analysis

- Daily data at LDZ level
- Actual DM and LDZ measurements
- Actual NDM AQs
- Gas Years analysed:
 - 2012/13
 - 2013/14
 - 2014/15
- Simulated the new algorithm to derive estimates of what UG would have been using
 - Revised ALPs and DAFs under the new seasonal normal basis
 - Revised CWV definitions

3

Updated UG Proportion Summary

Updated National Distribution of UG

UG Analysis – Summary Statistics

UG Summary Statistics (%)							
	Mean Std Dev Min Max						
2012/13	1.47	5.93	-50.54	23.62			
2013/14	-2.03	5.78	-33.95	19.93			
2014/15	-0.31	6.08	-50.00	21.91			

	Mean	Std Dev	Min	Max
2012/13, 2013/14, 2014/15	-0.29	6.10	-50.54	23.62

6

UG Analysis – Summary Statistics

UG Summary Statistics by LDZ				UG Summary Statistics by Month					
LDZ	Mean	Std Dev	Min	Max	Month	Mean	Std Dev	Min	Max
EA	-0.09	5.18	-17.46	16.61	Jan	1.86	3.67	-9.13	19.93
EM	-0.74	5.19	-16.94	18.92	Feb	2.70	3.54	-8.24	13.61
NE	0.01	5.65	-26.13	16.13	Mar	2.26	5.79	-21.38	19.17
NO	0.85	5.44	-20.26	23.44	Apr	-1.64	8.43	-29.51	23.62
NT	2.26	5.38	-17.99	20.51	May	-0.33	7.15	-50.54	23.44
NW	-1.26	6.98	-29.51	16.85	Jun	-1.12	6.22	-22.26	21.91
SC	-2.07	6.13	-21.57	13.99	Jul	-3.71	5.47	-24.24	18.92
SE	0.51	5.64	-50.00	21.91	Aug	-3.36	5.53	-23.69	13.76
SO	0.46	5.42	-19.84	17.71	Sep	-2.23	7.26	-28.02	20.51
SW	-1.76	6.55	-26.02	18.16	Oct	0.13	5.38	-50.00	16.05
WM	-1.19	5.91	-26.24	15.64	Nov	0.10	4.08	-28.19	18.73
WN	-0.38	7.69	-27.74	19.34	Dec	2.08	3.72	-33.95	14.40
WS	-0.21	6.17	-50.54	23.62					

The above tables display the summary statistics across the 3 years.

Average UG over last 3 years by LDZ

Average UG over last 3 years by month

9

GB CWV comparison over the 3 years

	Average GB CWV	Average GB	Average GB CWV	Average GB CWV
Month	over 3 gas years	CWV 2012/13	2013/14	2014/15
Oct	11.35	9.99	12.01	12.05
Nov	6.95	6.53	6.33	7.98
Dec	4.65	4.01	5.37	4.56
Jan	3.72	3.02	4.61	3.52
Feb	3.86	2.94	4.98	3.67
Mar	5.78	3.48	7.43	6.43
Apr	9.87	8.44	10.88	10.29
May	12.47	11.96	13.17	12.29
Jun	14.69	14.53	15.06	14.48
Jul	15.48	15.64	15.59	15.21
Aug	15.25	15.52	14.96	15.28
Sep	14.13	14.03	14.73	13.64

The cells highlighted in blue show the coldest month out of the 3 years. The cells highlighted red show the warmest month out of the 3 years. On average, it appears the 2012/13 was the coldest year and 2013/14 was the warmest year.

¹⁰

Simple linear regression was carried out on the following variables to investigate if the variation in UG could be explained. The data used in the analysis was at LDZ level over the 3 gas years

X	У	R ²
CWV	UG	12.97%
SumNDMEST	UG	11.44%
DMEnergy	UG	0.88%
SNCWV	UG	8.07%
WCF	UG	8.81%
EUC01B	UG	12.08%

The following graphs also allow us to explore any possible relationships. (note: GB CWV and UG values has been used in the charts for visual purposes only. The analysis was carried out at LDZ level).

11

Exploring the relationship between UG and CWV

XX>Serve

Exploring the relationship between UG and CWV

Correlation analysis between GB CWV and % UG Oct 2013 – Sep 2015 (latest 2 gas years)

xx>serve

Multiple Regression Analysis

- After investigating the individual variables through simple linear regression, it was clear that there is large proportion of variation in unidentified gas that is still unexplained.
- Further analysis was then carried out which allowed for several independent variables to be investigated simultaneously.
 It also allowed for other variables to be explored (e.g. day of the week and month).
- The first model to be explored using multiple regression contained all of the variables tested in simple linear regression earlier, to see how well they performed together.

14

Multiple Regression Results

	De	The REG Pr Model: M pendent Var	rocedure IODEL1 riable: UIG		
	Number of Number of	Observatior Observatior	ns Read ns Used	14235 14235	
		Analysis of	Variance		
Source	DF	Sum Squar	of es S	Mean quare F	Value Pr⇒F
Model Error Corrected Total	6 14228 14234	1.286254E 6.097586E 7.38384E	17 2.1437 17 4.2856 17	57E16 24E13	500.22 <.0001
Roo Dep Coe	t MSE endent Mean ff Var	65464 10359 632.152	168 R-Squa 183 Adj R-1 181	re 0.1 Sq 0.1	742 739
		Parameter E	stimates		
Variable	Par DF Es	rameter stimate	Standard Error	t Value	$\Pr > t $
Intercept Shrinkage DMEnergy SumNDMEst cwv WCF FUC01B	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1558855 1.94871 0095400 0.03744 -147321 -867321 0.08043	298286 0.40641 0.00553 0.00830 25619 38432 0.01088	5.23 -4.79 -0.17 -4.51 -5.75 -22.57 7.39	<.0001 <.0001 0.8630 <.0001 <.0001 <.0001

0.01088

7.39

<.0001

0.08043

EUC01B

15

Model Selection

- The number of variables to be used in the analysis = 54 (this includes all weather variables, demand variables at LDZ and EUC level, dummy variables for: day of the week, holidays and month)
- With such a large number of variables, eliminating one variable at a time using standard multiple regression can take an extreme amount of time.
- Due to the large number of variables, Stepwise Regression seems to be a sensible automated method to select the best model.

16

Stepwise Regression

- Stepwise Regression starts with an empty model and incrementally builds a model one variable at a time. Variables already in the model will not necessarily remain (like Forward selection). The Backward component of the method removes variables from the model that do not meet the significance criteria (0.05)
- When carrying out the analysis, the best model gave an R² of 27.83%. There
 is still a large proportion of variation in UG that is still unexplained.

Conclusions

- There is still a large proportion of variation in UG that is unexplained.
- There does not appear to be a strong relationship between CWV and UG.
- UG is most likely to be negative in the summer months.

18