

Demand Estimation Sub-Committee Presentation of 2013 Algorithms

10th July 2013

respect > commitment > teamwor

DESC: Objectives of Meeting

- Key objectives of today's meeting:
 - Recap on DESC obligations following amendments to Section H of UNC
 - Inform DESC of process followed in derivation of NDM proposals
 - Provide summary of where TWG has reviewed the output and had the opportunity to challenge the decisions made
 - Provide summary of TWG responses to draft NDM proposals and their overall recommendation to DESC
- Outcome Obtain DESC approval to submit NDM proposals to Transporters and Users as per UNC requirement

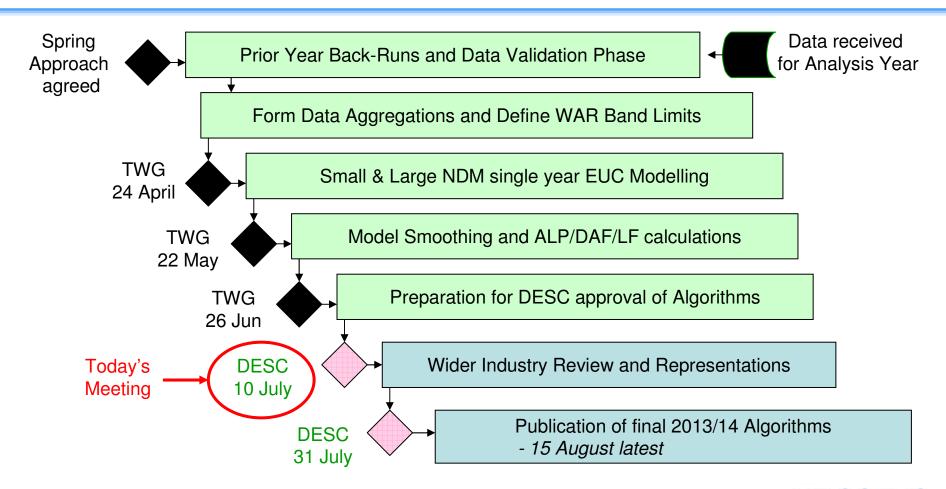
respect > commitment > teamwork

Purpose of NDM Modelling

- Provides a method to differentiate NDM loads and provide profiles of usage
 i.e. End User Category (EUC) Definitions
- Provide a reasonable equitable means of <u>apportioning</u> aggregate NDM demand (by EUC / shipper / LDZ) to allow daily balancing regime to work
 - i.e. NDM profiles (ALPs & DAFs)
- Provide a means of determining NDM Supply Point capacity
 - i.e. NDM EUC Load Factors
- The underlying NDM EUC and aggregate NDM demand models derived each year are intended to deliver these obligations only
- NDM EUC profiles are used to apportion aggregate NDM demand and do not independently forecast NDM EUC demand

respect > commitment > teamwork

Changes to UNC Section H


- Responsibilities for Demand Estimation changed following implementation of UNC Modification 331 on 3rd January 2012
- DESC collectively required by UNC to:
 - Submit proposals to Transporters and Users for each Gas Year comprising:
 - EUC Definitions
 - NDM Profiling Parameters
 - Capacity Estimation Parameters
 - In addition:
 - Analysis of accuracy of the allocation process
 - Derivation of CWV and Seasonal Normal
 - Consultation with Industry
- Xoserve acts as the common NDM Demand Estimation service provider

Agreed 2013 Modelling Workplan

- Workplan for 2013 Modelling agreed at February 2013 DESC meeting
- Workplan aims to provide more transparency of process and introduce checkpoints for DESC/TWG review
 - 3 TWG meetings to date April, May and June
 - Further interaction via email

Agreed 2013 Timetable

Summary of overall process

 Series of slides to summarise the data collection, modelling, outcomes and TWG involvement / decisions made

Basis of 2013 Modelling

- Described in "Spring Approach" document, reviewed at February 2013 meeting
- Key aspects of EUC demand modelling basis for Spring 2013 analysis:
 - 12 month analysis for datalogger data sets (2012/13)
 - Data sets cover April to March (as in 2011/12)
 - 12 month analysis for AMR data sets (2012/13)
 - Data sets cover April to March (as in 2011/12)
 - Data validation rules unchanged
 - CWV definitions and SN basis as Spring 2012

TWG Involvement: 24th April 2013 Objectives of Meeting

- First check point meeting of Technical Workgroup
- Key objectives of April Meeting
 - Inform TWG of numbers of validated data sets collected
 - Consider the most appropriate data sets and aggregations to apply to the most recently available sample data - i.e. 2012/13
- Outcome TWG finalised sample sizes, aggregations and WAR Band Limits
- TWG raised question relating to aggregations which was added to potential work areas log
- Next phase was then able to commence:
 Single Year modelling 2012/13 data

Total NDM Population Counts: Supply Point & AQ

Consumption Range	% of Total NDM	
	Total AQ	Total Count
0 – 73.2 MWh pa	72.5%	98.78%
0 – 293 MWh pa	78.5%	99.67%
0 – 2,196 MWh pa	88.8%	99.96%
>2,196 MWh pa	11.2%	0.04%

On an AQ basis:

- Small NDM is by far the main component of the overall NDM sector
- The range 0-73.2 MWh pa constitutes nearly 3/4 of overall NDM
- The range 0-293 MWh pa constitutes nearly 4/5 of overall NDM
- The range 0-2196 MWh pa constitutes nearly 9/10 of overall NDM
- Large NDM is very much a minority component of overall NDM

Summary of Validated Data

- Both AMRs & Dataloggers used in Small NDM Analysis (<2,196 MWH pa)
- NDM Sample Counts:

Sample Counts	2012/13 data	2011/12 data
0 to 73.2 MWh pa Range – AMR	3,036 Domestic	2,996 Domestic
73.2 to 2,196 MWh pa Range – AMR & Dataloggers	5,445	5,469
> 2,196 MWh pa Range – Dataloggers	3,412	3,632

Small NDM Supply Points (<2,196 MWh pa) Consumption Band Aggregations

	Consumption Band Analysis – 2012/13 data
Band 01 0 to 73.2 MWh pa	Individual LDZ
Band 02 73.2 to 293 MWh pa	Individual LDZ
Band 03 293 to 732 MWh pa	Individual LDZ WS/SW Combined
Band 04 732 to 2,196 MWh pa	Individual LDZ

- Aggregations to model agreed at April TWG
- In the main sufficient data available to allow individual LDZ analysis (usual combination of NW/WN excepted)

Small NDM Supply Points (<2,196 MWh pa) WAR Band Aggregations

Consumption Range	Comments on 2012/13 data
0 to 73.2 MWh pa (EUC Band 1)	Not generally Monthly read – no WAR Bands
73.2 to 293 MWh pa (EUC Band 2)	Not generally Monthly read – no WAR Bands
293 to 732 MWh pa (EUC Band 3)	Modelled all LDZs separately except: NW/WN combined & WS/SW combined.
732 to 2,196 MWh pa (EUC Band 4)	Merged Band 3 & 4 data for WAR Band Analysis

- Aggregation of sample data to allow sufficient sample analysis
- Groupings to model agreed at April TWG meeting

Large NDM Supply Points (>2,196 MWh pa) Consumption Band Aggregations

Consumption Range	2012/13 Analysis	2011/12 Analysis
Band 05 2,196 to 5,860 MWh pa	Individual LDZ	Individual LDZ
Band 06 5,860 to 14,650 MWh pa	Individual LDZ	Individual LDZ
Band 07 14,650 to 29,300 MWh pa	By 5 or 4 Groups of LDZs	By 5 Groups of LDZs
Band 08 29,300 to 58,600 MWh pa	By 4 or 3 Groups of LDZs	By 4 Groups of LDZs
Band 09 >58,600 MWh pa	National	National

- Aggregation of sample data to allow sufficient sample analysis
- Groupings to model agreed at April TWG meeting

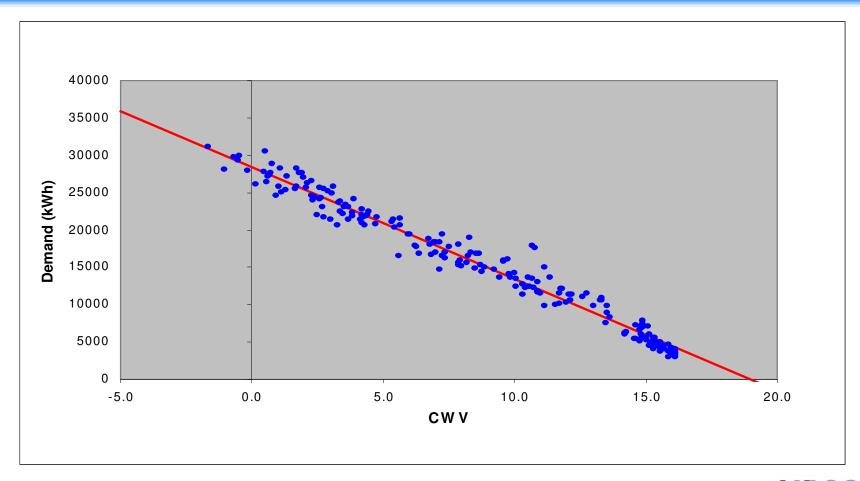
Large NDM Supply Points (>2,196 MWh pa) WAR Band Aggregations

Consumption Range	2012/13 Analysis	2011/12 Analysis	
Band 05 2,196 to 5,860 MWh pa	By 5 Groups of LDZs	By 5 Groups of LDZs	
Band 06 5,860 to 14,650 MWh pa	By 3 Groups of LDZs	By 3 Groups of LDZs	
Band 07 14,650 to 29,300 MWh pa	National	National	
Band 08 29,300 to 58,600 MWh pa	National	National	
Band 09 >58,600 MWh pa	N/A - No WAR Bands	N/A - No WAR Bands	

- Aggregation of sample data to allow sufficient sample analysis
- Groupings agreed at April TWG meeting

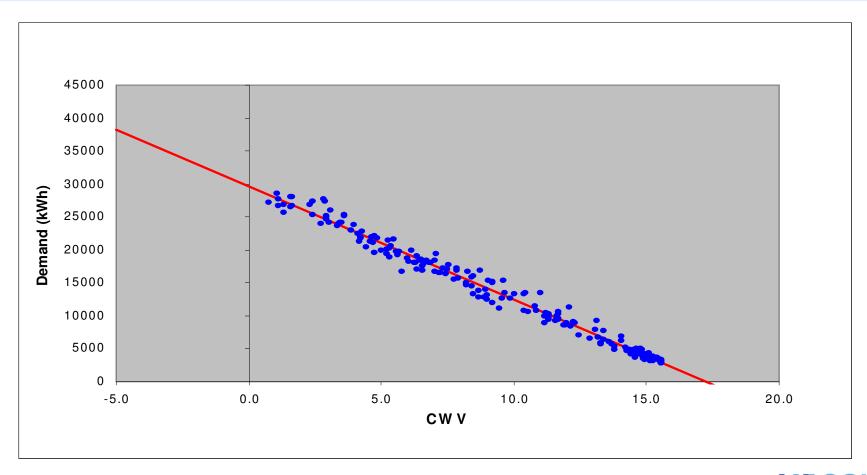
Single Year Modelling – 2012/13 data

- Analysis carried out...
 - Aims to assist in the creation of profiles based on the relationship between demand to weather
 - Identify the best fit model based on available data samples
 - View of results so far and highlight any issues raised
- Tools used to identify best model :
 - R² Multiple Correlation Coefficient statistical tool for identifying 'goodness of fit' (100% = perfect fit / direct relationship)
 - Variations in Indicative Load Factors.......


Small NDM Modelling Results EUC Band 1: 0 – 73.2 MWh pa Domestic Sites

	Indicative Load Factor	R ² Multiple Correlation Coefficient	Sample Size
SC	40%	98%	236
NO	33%	98%	238
NW / WN	36%	98%	245
NE	37%	97%	266
EM	35%	99%	255
WM	32%	99%	257
WS	34%	97%	244
EA	33%	99%	281
NT	32%	99%	247
SE	31%	99%	243
SO	29%	99%	263
SW	31%	99%	261

Indicative Load Factor: R² Multiple Correlation Coefficient: Sample Size


Small NDM Modelling Results NE LDZ, EUC Band 1: 0 - 73.2 MWh pa

Demand against NE CWV - Monday to Thursday - Holidays included

Small NDM Modelling Results SW LDZ, EUC Band 1: 0 - 73.2 MWh pa

Demand against SW CWV - Monday to Thursday - Holidays included

respect > commitment > teamwor

TWG Involvement: 22nd May 2013 Objectives of Meeting

- Second check point meeting of Technical Workgroup (old Technical Forum)
- Key objectives of May meeting
 - Review and confirm results of single year EUC Modelling
- Outcome TWG discussed and agreed single year models to be used including aggregations to take forward for all NDM consumption bands
 - e.g. TWG agreed to use four groups of LDZs in 14650-29300
 MWh consumption band (previously 5 groups)
- Next phase was then able to commence:
 Model Smoothing and derivation of draft NDM proposals

respect > commitment > teamwor

Model Smoothing and Derivation of Parameters

- Model Smoothing process carried out on 3 years of sample data (2010/11, 2011/12 and 2012/13)
- Smoothed EUC model parameter values created represent the average value from across the 3 years (in place to address year on year volatility)
- Smoothed model parameter values were then used to derive the various NDM proposals such as the ALPs
- During this phase there was further TWG interaction where details of amendments to weekend factor content in the second results were shared

TWG Involvement: 7th June to 25th June 2013 Review of draft NDM proposals

- Draft NDM proposals were published and available for review on 7th June
- Note issued to TWG inviting feedback and comments
- One response received from E.On representative on TWG covering:
 - Request to understand reasons for differences in specific ALP and DAF patterns compared with previous years
 - Importance of achieving new SN basis
 - Weekend Scaling Factor behaviour
- Next phase was then able to commence: Investigate TWG comments and provide feedback at meeting on 26th June

TWG Involvement: 26th June 2013 Objectives of Meeting

- Third check point meeting of Technical Work Group
- Key objectives of this meeting:
 - Review TWG comments and agree any actions
 - Agree approach to presentation of proposals to DESC
- Outcome: Following discussion about representation TWG provided support for proposals and recommended they be presented to DESC
- Further detail on representation to follow

respect > commitment > teamwork

E.On Response to Algorithms (1 of 2)

- There were 3 queries specific to the draft proposals
 - Query 1: Can we provide views on the drivers behind change in DAF profiles for a number of EUCs
 - Query 2: What is the driver behind change in ALP profile for 2013 for specified EUCs
 - Query 3: What is the driver for the change in the early May Bank Holiday ALP shape for selected EUCs
- The changes to models highlighted in queries 1 to 3
 were as a result of the underlying characteristic of the
 'smoothed' models changing, whether that was related to
 warm weather cut-offs or holiday factors
- TWG accepted the explanation, although a further item relating to warm weather performance was added to potential work areas log

respect > commitment > teamwor

E.On Response to Algorithms (2 of 2)

- Query 4: Reiteration of the desire to undertake a full Seasonal Review was made:
 - An update was provided on the current position of the tender process for procuring the climate change methodology
- Query 5: Request for an update on the analysis of the day of the week shape seen in Scaling Factor:
 - Analysis so far has not identified any modelling issues that could be contributing to a day of the week effect
- Full details of the representation and response can be viewed on Joint Office website under meeting material for 26th June

NDM Algorithm Performance

- In addition to production of demand models and derived factors DESC also has the responsibility to provide a summary of the algorithm performance in the preceding year
- Xoserve performs this role as the common demand estimation service provider
- The main algorithm performance analysis for the gas year is completed in Autumn however historically a review has also been undertaken during Spring using the recently collected data and published in Appendix 13 of the NDM report
- DESC agreed at the November 2012 meeting to only refresh the analysis once a year and to provide a repeat of the Autumn analysis in the annual NDM report
- The NDM report including Appendix 13 has also now been completed and published in the UK Link Docs area

Recommendations to DESC

- Objective: Obtain DESC approval to submit NDM proposals to Transporters and Users as per UNC requirement
- Draft NDM proposals are ready to be submitted to wider industry for review
- TWG have been involved throughout the process and provided their recommendation to proceed
- Appendix 13 summarising NDM algorithm performance has been published
- DESC majority now required to proceed to next phase

Next Steps

- w/c 15th July
 - Prepare documentation and apply any final revisions
 - Xoserve publish DESC's proposals by 19th July for industry to review
- w/c 22nd July
 - Users and Transporters have 5 b.ds to review and submit representations to DESC
- w/c 29th July
 - DESC meeting to review representations and consider response
 - Proposed meeting date Wed 31st July
- w/c 5th August
 - DESC provide formal response to representations (via Xoserve)
- w/c 12th August
 - Xoserve on behalf of Transporters publish final proposals to industry (no later than 15th August) and submit interface files to key systems

