

AUG Technical Workgroup of UNCC

Proposed AUGS Walkthrough

Tony Perchard, Andy Gordon & Clive Whitehand 11 January 2019

SAFER, SMARTER, GREENER

Agenda

- Meeting Purpose
- Project Overview
- Project Status
- Analysis Summary and Methodology changes from previous year
- Methodology Overview
 - Overall Unidentified Gas estimation
 - EUC/Product split
 - Conversion to factors
 - Directly estimated Unidentified Gas components
 - Balancing Factor
 - UIG factors
- Modifications & Industry updates
- Q&A

Meeting Purpose

- AUG Expert to update Technical Workgroup (TWG) on
 - Overall project status
 - Findings from analysis work during 2018/19 AUG year
 - Updates to methodology
 - Latest view of UIG Factors
- Prepare TWG for consultation period
 - Early opportunity to raise questions & seek clarification
 - Prompt discussion

Project Overview

- AUG Expert appointed July 2016
 - Develop a methodology to calculate Weighting Factors to apportion UIG by EUC/Product Class
 - Populate table of Weighting Factors to apportion UIG by EUC/Product Class
- Mod639R Review of AUGE Framework and Arrangements
 - New Timeline
 - Generic Terms of Reference

Project Overview

Mod 0639R – Review of AUGE Framework and Arrangements

Project Status

- Overall ON TARGET
- Data Challenges
 - First year of data extraction from Post-Nexus systems
 - Meter asset & read data a particular issue
 - Current UIG factors based on old consumption calculations
 - Additional theft data requested from SPAA
 - Permission granted for AUG Expert to receive data
 - Expected delivery of data to AUG Expert mid-Jan
 - Separate theft methodology published to allow review during consultation
- Issues Status
 - New issues identified and assessed
 - Analysis completed for all but 3 issues (8, 35 & 37)
 - Awaiting additional information/data

Data Status – Outstanding Issues

- Offline Adjustments
 - Only provided by billing month
- Meter Asset Information
 - CSEP Flag incorrectly populated preventing updated consumption calculation
 - Outstanding queries regarding meters with volume conversion
- IGT CSEPS
 - May not include SIUs
 - CSEP rejection process no longer managed by Xoserve
 - Need to identify alternative data source
- Theft
 - SPAA data expected mid Jan
- Meter Exchanges
 - Does AUGE dataset include all reads?

Issue 8 – More Detailed Theft Analysis

- Methodology developed and documented as addendum to AUGS
- Calculation set up using simulated data
- Data expected mid-Jan
- Issue 14 Theft from PC2 sites
 - Methodology updated to differentiate based on site history (ex-PC1)
- Issue 21 Improved Replacement Values in Consumption Calculation
 - Methodology updated to interpolate where possible
 - Not included in current UIG factors (consumptions not recalculated)

- Issue 25 Use of Static Correction Factors for Volume Conversion
 - Detailed assessment carried out
 - Methodology updated to include UIG based on actual atmospheric pressure (~75GWh)
 - Methodology updated to include UIG from meter temperature differences from assumed average of 12.2C
 - Insufficient evidence to recommend moving away from 12.2C average
 - UIG from meter temperature is therefore zero
 - Findings shared with UIG Taskforce

- Use of Standard National Conversion Factor
- What are the issues that the industry wishes to address?
 - Daily UIG, Annual UIG, Billing?
 - Allocation, Reconciliation, AQ Calculation?
 - National vs Local?
 - Seasonal Normal vs Actual?
- Any approach based on using 'Actual' Temperature needs to be based on real measured meter temperatures
 - Recommend study to develop relationship between air temperature and meter temperature taking into account meter location and site type

- Meter Gas Temperature survey (outline scope)
 - Objective
 - To find a relationship between air temperature and gas temperature in meters
 - Could be used on day by day basis to provide an accurate volume conversion
 - Requires suitably sized sample to include
 - Sheltered, non-sheltered and indoor meters
 - Different market sectors
 - Different geographical locations
 - Several hundred sample sites required as minimum, potentially more depending on accuracy expectations
 - Requires temperature gathered over 12-18 months period to cover seasonal changes
 - e.g. garage based meters will be warmer than outside air temperature during winter and cooler than outside during summer

- Timescales
 - Procuring a service provider (6m+)?
 - Generating a target sample (1-2m)
 - Procurement of measurement equipment and installation (9-12m+)
 - Obtaining data over period of time (12-18m)
 - Carrying out analysis report/recommendations (2-4m could overlap data acquisition)
 - Implementation (industry wide or limited to UIG?)
- Cost
 - Depends on sample size and technical issues likely to be several $\pounds'00k$ possibly $\pounds1m+$
- Risks
 - Getting consumers to agree to have monitors installed is very challenging
 - If sample size too small, resulting model uncertainty may be too large

- Option A "Amend AUGE Process to re-distribute UIG based on estimated impacts of conversion factors (forecast basis)"
 - Methodology already updated BUT...
 - Assumes Tav=12.2C (no UIG) as data does not support alternative value
 - Assumes a single National value for Tav as UIG factors are at National level
 - Does not resolve the level of UIG, just redistributes it
 - Interdependency between AUG process and daily UIG calculation

- Additional Suggestions (not considered in detail)
 - Continue to use ALP/DAF Scaling ("Do Nothing")
 - Record temperature at NDM sample sites (not necessarily all)
 - Use 'Actual' Temperatures in AQ calculation
 - Mandatory Volume Conversion
 - for daily read sites (PC1/PC2)
 - for more sites
 - Temperature Conversion for all sites (GTER currently allows this for all but 01B)
 - Separate Volume Conversion Error from UIG
 - CDSP estimate Volume Conversion Error daily based on temperature
 - Volume Conversion Error apportioned based on throughput for MPRs without volume conversion devices (greater incentive to install converters)
 - Remaining UIG apportioned using AUG factors
 - AUG Methodology would need to change

- Issues 26, 27 & 29 Correction Factor Issues
 - Issues identified and raised with CDSP for investigation
 - Impact assessment based on latest data shows insignificant contribution to permanent UIG
 - Assumes CDSP records are updated with site-specific CFs from MAMs
- Issue 28 Accuracy of Volume Converters
 - Standards IGEM/GM5 & BS EN 12405 apply
 - 0.5% overall device error
 - No evidence of significant bias
- Issue 30 CV Accuracy
 - Ofgem require absolute error in CV < 0.1MJ/m3
 - Analysis carried out by Dave Lander Consulting
 - No evidence of significant bias

- Issues 31 Changes in Product Class Populations
 - Extrapolation of population and AQ to forecast year
 - Capture ongoing trend
 - Avoid impact of step changes
 - Method described in AUGS and applied to data
- Issue 32 Changes in Site Level UIG on Product Class Change
 - UIG Factors are NOT site specific but represent PC/EUC average

- Issue 33 Level of Permanent (Final) UIG Post-Nexus
 - UIG Taskforce Update to Ofgem, Nov 2018
 - 15 months since Nexus, UIG reduced from 4.65% to 4% through reconciliation

Final UIG vs Initial UIG

- Differences between Final UIG and (Initial UIG + Reconciliations)
 - AUGE Expert estimate of Final UIG assumes Seasonal Normal Weather
 - 2017 Tav 1C lower than average of 2011-2016 (~1.5TWh UIG)
 - UIG during 'Mini Beast from the East' was ${\sim}13\%^*$
 - Meter Point Reconciliations
 - Final UIG is an estimate assuming all reconciliations up to Line in the Sand
 - Reconciliations only approximately assigned to month
 - Potential for reconciliations close to line in the sand
 - Offline Reconciliations (LDZ Metering Errors, DM & Unique Site Adjustments)
 - MOD0429 Adjustments
 - Asset Data Updates (e.g. CF) not reconciled

* UIG Taskforce Sprint 1 Findings

D+5 UIG: 1 Jun to 25 Dec

- Many UIG issues identified and resolved
- ALP/DAF uplift applied starting 1 Oct 2018
- Average (June-Dec) UIG: +4.6% in 2017 vs -0.2% in 2018

Final UIG Estimation (for 2018/19)

- AUG Expert determines which historic years to include
 - Relevance
 - Level of Reconciliation
 - Data Quality

CSEP Consumption

- Pre-Nexus, no Meter Point level information
 - High degree of uncertainty in Consumption estimate
 - Based on AQ
- Post-Nexus, meter read information available
 - Opportunity to re-assess CSEP contribution to UIG
 - Review methodology going forward

Issue 35 – UIG from Meter Exchange

- Initial high-level investigation suggests this could be a source of UIG
 - Closing read but no opening read can result in negative volume
 - Opening read but no closing read can result in missing volume
 - Opening and closing reads with gap can result in missing volume
- Working with CDSP to understand issues
- Issue 37 Discrepancies between Converted & Unconverted Meter Reads
 - Analysis requires additional information

- Issue 39 Accuracy of NDM Algorithm
 - Generally impacts temporary UIG only
 - Insights from Volume Conversion Analysis shared with UIG Taskforce
 - Introduction of ALP/DAF Scaling have mitigated impact at allocation
- Issue 49 Accuracy of NDM Read Estimates
 - Consumption calculation does not differentiate between actual and estimated reads
 - Small % of Estimated Reads used

		Number of	% of
	Number of	Estimated	Estimated
Gas Year	Reads	Reads	Reads
2011	40,843,119	8,227	0.02%
2012	40,804,781	12,010	0.03%
2013	40,896,074	13,138	0.03%
2014	40,229,396	38,320	0.10%
2015	36,677,781	34,333	0.09%

Summary of Methodology Changes

- Proposed new approach to Theft Split
- Differentiation between sites in PC2 (ex-PC1, ex-NDM)
- Improved Replacement Values in Consumption Calculation
 - Described in current AUGS but not included in UIG Factors
- Volume Conversion Errors Resulting from Static CFs
- Product Class Population/AQ extrapolation method
- Update of Consumption Methodology to Handle Post-Nexus Meter Read Data
 - Update to logic as all new meter reads are converted to metric
 - Not included in current AUGS or UIG Factors

Methodology Overview

- Evolving methodology
 - Similar methodology to previous years
 - Estimate Total Unidentified Gas & Split by EUC/Product class
 - More post-Nexus data available

Total Unidentified Gas Estimation

- Need estimate of Total Unidentified Gas to calculate factors (Consumption Method)
- Estimate Total Unidentified Gas = LDZ Input Sum of Consumption for all MPRs
 - LDZ Input Metered
 - Consumption is estimated based on meter reads, AQ etc

Forecast Unidentified Gas

- Balancing Factor
 - BF = Total Unidentified Gas Directly estimated Unidentified Gas
 - Projected forward using data up to 2015/16
- Directly estimated Unidentified Gas
 - Most recent data available

Forecast Unidentified Gas Components (GWh)

- Split of directly calculated Unidentified Gas categories is part of this calculation
- Balancing Factor is nearly all undetected theft
 - Split by throughput, amended for relative difficulty of stealing from different meter types and metering regimes
 - Smart meter, AMR, traditional meter
 - Daily meter readings, periodic meter readings

$\mathbf{Energy} \rightarrow \mathbf{Factors}$

Population/Throughput Calculations

- Based fully on post-Nexus data
 - Actual Product Class
- Xoserve have supplied data for a number of points in time
 - Earliest is June 2017
 - Latest is August 2018
- Establish trends and extrapolate to April 2020
 - Full 36-way Product/EUC split
 - Avoid duplicating effects of step changes
- Total Smart Meter population (large suppliers) from BEIS Q2 2018 Report
- AMR population (small suppliers, EUC 02B and 03B) from ICoSS
 - Split Product Class 4 into Smart and traditional meters
 - All sites in EUCs 04B and above are required to have AMR

Population/Throughput Calculations

Market Sector	Smart Meter / AMR Population 30/06/2018	Smart Meter Population 31/03/2020	Smart Meter Percentage 31/03/2020	
Domestic	4,891,475	9,572,023	45.9%	
Non-Domestic	143,496	185,983	36.0%	

Population Forecast by EUC and Product Class

1st April 2020

Number of Sites

	01B	02B	03B	04B	05B	06B	07B	08B	09B	Total
Product 1	0	0	0	0	0	0	0	0	322	322
Product 2	18	104	21	49	76	251	250	284	0	1,053
Product 3	115,516	23,289	10,154	2,676	607	172	57	23	0	152,493
Product 4	24,265,451	184,875	37,290	17,259	4,337	1,415	509	195	0	24,511,332
Total	24,380,984	208,267	47,465	19,984	5,021	1,839	816	502	322	24,665,200

Number of Sites (Percentage by EUC)

	01B	02B	03B	04B	05B	06B	07B	08B	09B
Product 1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
Product 2	0.00%	0.05%	0.04%	0.24%	1.52%	13.68%	30.68%	56.53%	0.00%
Product 3	0.47%	11.18%	21.39%	13.39%	12.10%	9.34%	6.95%	4.60%	0.00%
Product 4	99.53%	88.77%	78.56%	86.37%	86.38%	76.98%	62.37%	38.88%	0.00%

Based on CDSP asset data from Jun 2017 – Aug 2018 extrapolated to April 2020

Throughput (AQ) Forecast by EUC and Product Class

1st April 2020

Aggregate AQ (GWh)

	01B	02B	03B	04B	05B	06B	07B	08B	09B	Total
Product 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57,808.7	57,809
Product 2	0.5	9.8	11.6	69.5	331.8	2,613.0	5,193.9	11,884.3	0.0	20,114
Product 3	2,046.8	3,639.9	4,483.9	3,141.2	2,107.7	1,523.4	1,143.3	919.7	0.0	19,006
Product 4	325,477.8	24,737.2	16,776.8	20,751.7	14,627.3	12,673.0	10,324.9	7,720.0	0.0	433,089
Total	327,525.1	28,386.9	21,272.2	23,962.4	17,066.8	16,809.5	16,662.1	20,523.9	57,808.7	530,017.6

Aggregate AQ (Percentage of Total)

	01B	02B	03B	04B	05B	06B	07B	08B	09B
Product 1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	10.91%
Product 2	0.00%	0.00%	0.00%	0.01%	0.06%	0.49%	0.98%	2.24%	0.00%
Product 3	0.39%	0.69%	0.85%	0.59%	0.40%	0.29%	0.22%	0.17%	0.00%
Product 4	61.41%	4.67%	3.17%	3.92%	2.76%	2.39%	1.95%	1.46%	0.00%

Based on CDSP asset data from Jun 2017 – Aug 2018 extrapolated to April 2020

Shipperless/Unregistered Sites

- Snapshots Sep 2011 Sep 2018
- EUC from AQ (supplied in snapshots)
- Split as appropriate for
 - Pre/post Mod 410A (using Effective Date)
 - Pre/post Mod 424 (using Isolation Date)
 - Pre/post Mod 425 (using Isolation Date)
- Split between Temporary and Permanent using existing rules
- Split between Products for each EUC
 - These sites do not have a defined Product Class
 - Therefore split using tables in previous slides
- Trend over time \rightarrow extrapolate to forecast year

Shipperless/Unregistered Sites – Example Trend

- Each trend needs to be constructed using a piecewise approach
- Effects of relevant Mod over time

Shipperless/Unregistered Sites

- All relevant Mods well established
 - Latest is Mod 425, effective from 01/04/2014
- Effects can be tracked with the set of snapshots available
 - Construct piecewise trends
- Split each Unidentified Gas category into
 - Pre- and post-Mod sites
 - Permanent/Temporary
 - LDZ
 - EUC
 - Product Class
- 1872 trends for each main Shipperless/Unregistered Unidentified Gas category

iGT CSEPs

- Snapshots Jan 2015 Jun 2017 (Unknown Projects new data source needed)
- Unregistered sites on known CSEPs (new data source needed)
- Registered sites on known CSEPs
- EUC split taken from Registered sites on known CSEPs
 - Applied to Unknown Projects
- Add Unidentified Gas from Unregistered sites on known CSEPs
- Split between Product Class for each EUC
 - Site-by-site information not available for CSEPs
 - Therefore split using tables in previous slides
- Split between Temporary and Permanent using existing rules
- Trend over time \rightarrow extrapolate to forecast year

iGT CSEPs – Example Trend

Example from EM LDZ – one of 468 trends for iGT CSEPs Unidentified Gas

Consumer Meter Errors

- Meter capacity report
- Identify meters operating at extremes of their range
- Use AQ and Meter Capacity from report
 - Under 1% of capacity \rightarrow under-read
 - Over 95% of capacity \rightarrow over-read
- EUC from AQ
- Look up Product Class from asset data

Consumer Meter Errors

- Calculate net over/under read for each EUC/Product Class combination
- Unidentified Gas from this source all Permanent
- Data limited to one snapshot per year
 - Trends are limited but there is now enough data to calculate them
 - EUC/Product Class split, individual trend for each
 - Extrapolate to forecast year

Volume Conversion Errors

- Pressure Correction
 - Calculate Correction to Standard CF

$$CF_{err}^{std} = \left[\frac{(P_{av} - 1013.25)}{1013.25}\right] * 1.0098/1.02264$$

- Apply to SN Consumption for all Meters without Volume Conversion
- Calculate additional adjustment for Meters with High CF (higher operating pressures)
 - Found to be negligible (~0.2GWh/annum)
- Temperature Correction
 - Calculate Correction to Standard CF

$$CF_{err} = \frac{(273.15 + 12.2)}{(273.15 + T_{av})} - 1$$

Apply to SN Consumption for all Meters without Volume Conversion

Shrinkage

- Shrinkage Error
 - The AUGE Framework has been updated to exclude this from the Unidentified Gas analysis
- CSEP Shrinkage
 - No CSEP Shrinkage element in the current settlement process
 - Feeds into UIG and hence included in the Unidentified Gas analysis

CSEP Shrinkage Calculation

- Data from DNs
 - Mains populations and number of customers (aggregate LP)
 - Network models (Cadent)
 - Mains populations and number of customers by network
- Estimate of mains length per customer from network models
 - Network sections selected using polygons
 - Similar composition to CSEPs
 - Small, non-rural, heavily domestic
 - Sense check using aggregate data from other DNs
- Use CSEP customer numbers to estimate mains length
- Leakage rates from NLT used to estimate leakage
 - Assume CSEPs are all PE

Theft

- Undetected Theft is assumed to be the main component of the Balancing Factor
- Historic detected Theft affects the total Unidentified Gas calculation for the training period
- Theft data for full training period available
- Required as aggregate figure for each LDZ only
 - Individual figures for each training year
- Most Unidentified Gas from detected Theft is temporary
 - When it is detected within reconciliation period
 - Unidentified Gas from Thefts detected later than this goes into Balancing Factor
- Feeds into Consumption Method calculation for total Unidentified Gas

Theft Data

- Data from Xoserve records is detailed but incomplete
 - Includes vital fields for theft Unidentified Gas calculation
 - Does not include all thefts
- Data from annual Theft of Gas report is at a summary level but is more complete
 - Considerably more thefts reported by Suppliers to SPAA than by Shippers to Xoserve
 - More thefts were actually billed each year than were reported to Xoserve by the Shippers
- GWh stolen per year calculated using Xoserve data and scaled to Theft of Gas report total level
 - Each theft can be assigned to a Product Class directly, but data is only required at an aggregate level for this analysis

Balancing Factor Split

- Assumed to be mainly undetected theft
- Split based on throughput for site categories that can be subject to theft
 - Product Class 1 and EUC 09B excluded
- High limit: Smart Meters and AMRs have the same theft levels as other meters
- Low limit: Smart Meters and AMRs have no undetected theft
- Best estimate midpoint

	01B	02B	03B	04B	05B	06B	07B	08B	09B
Product 1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product 2	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	0.03%	0.07%	0.00%
Product 3	0.23%	0.40%	0.49%	0.35%	0.23%	0.17%	0.13%	0.10%	0.00%
Product 4	78.16%	7.12%	5.21%	2.29%	1.61%	1.40%	1.14%	0.85%	0.00%

Unidentified Gas Factors

Supply Meter Point Classification	Class 1	Class 2	Class 3	Class 4
EUC Band 1	0.13	4.12	53.93	93.40
EUC Band 2	0.13	3.69	49.68	111.48
EUC Band 3	0.13	3.44	46.65	121.16
EUC Band 4	0.13	3.26	44.62	45.14
EUC Band 5	0.13	3.05	43.38	43.86
EUC Band 6	0.13	2.74	42.74	42.58
EUC Band 7	0.13	2.21	42.47	42.38
EUC Band 8	0.13	1.37	42.37	42.17
EUC Band 9	0.13	0.13	0.13	0.13

Unidentified Gas Factors

Modifications & Industry Changes

- UNC Modifications
 - 0654S Mandating the provision of NDM sample data
 - 0658 CDSP to identify and develop improvements to LDZ settlement processes
 - 0659S Improvements to the Composite Weather Variable
 - 0664 Transfer of Sites with Low Read Submission Performance from Class 2 and 3 into Class 4
 - 0672 Incentivise Product Class 4 read performance
- DSC Change Proposals
 - XRN4621 Suspension of the Validation between Meter Index and Unconverted Converter Index
 - XRN4665 Creation of New EUCs

Next Steps

- Consultation Period 1 22 Jan
 - TWG to provide responses to AUG Expert asap
 - AUG Expert to provide written feedback to responses
 - Meeting to discuss feedback 15 Feb
- AUG Expert to prepare Modified AUGS & Table by 5 Mar
 - Table will be based on latest data where possible
 - Updated consumption calculations
 - Theft data

AUGE.software@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER