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 Where such publication is made in connection with any public enquiry, legal 
proceedings or arbitration. 

 

 Where such publication is made in connection with any company prospectus 
or similar document. 

 

 Where the client has notice that TUV SUD Ltd is seeking or intends to seek 
patent or like protection for any intellectual property produced in the course of 
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EXECUTIVE SUMMARY 
 
For the long model at any rate CFD grid independence has not been achieved; so the 
contention that the long model is required has not been proved. 
 
There is generally quite good agreement between experiment and CFD, but grid 
independence remains to be achieved. 
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1 INTRODUCTION 
 
NEL have been tasked by Kelton Flow Measurement Consultants to undertake a peer review 
of a Computational Fluid Dynamics (CFD) report.  The report title is “Computational Fluid 
Dynamics (CFD) analysis of orifice plate metering situations under abnormal configurations, 
Version 2.0” [1], authored by Dr W Malalasekera of Loughborough University, 2013. 
 
The report describes a series of CFD calculations which have been used to predict the 
measurement error when an incorrectly installed orifice plate was used.  
 
The aim of the review is to confirm that the recommendations made in report NEL 2013-98 
have been undertaken and to state whether the CFD work is now technically robust. 
 
 
2 MEETING THE RECOMMENDATIONS 
 
The report in Version 2.0 [1] does not meet the recommendations made in the peer review 
[2] of the previous version of the report [3], although hexahedral elements have been used 
where possible (see e.g. p. 39 of [1], following Recommendation 2 of [2]). 
 
It is stated that the orifice plate area is finely meshed (e.g. p. 39 of [1]), but the mesh spacing 
is not stated, and so it is not clear that it meets Recommendation 3 of [2] that it be a 
maximum of 0.1 mm around the orifice edge. 
 
The quality of the mesh is still not reported (requested in 2.1.3 of [2]). 
 
It is stated (e.g. p. 39 of [1]) that boundary layer meshes have been used at walls to maintain 
y+, but no values of y+ are given (the absence of y+ values was commented on in 3 of [2]). 
 
In 2.2.2 of [2] NEL stated, „It is crucially important to show both the Reynolds number and 
computed discharge coefficients‟. 
 
„It is also necessary to compare the base line discharge coefficient (i.e. the computed 
discharge coefficient for the orifice plate in the correctly installed location) with the Reader-
Harris/Gallagher (1998) equation in ISO 5167-2:2003. 
 
„Studies must also be conducted to determine whether the computed shift in discharge 
coefficient (from baseline to test case) varies significantly with Reynolds number. 
 
It should be stated that the CFD calculations are treated as incompressible. This is a 
reasonable method but it must be documented.‟ 
 
These matters have not been addressed: the graph from Ben Kirkman confirms that the 
computed error in flowrate varies only weakly with Reynolds number, but still leaves the 
interpretation of the experimental data and the CFD results incomplete. 
 
Mesh independence (Recommendation 4) has not been demonstrated: see below. 
 
 
3 ANALYSIS 
 
However, NEL has analysed some of the data: three analyses have been carried out. 
 
3.1 Standard orifice plate 
 
The differences between ISO 5167-2:2003 [4] and both the computed results and the 
experimental results are shown in Figure 1.  These results are good in terms of agreement 
with experiment, especially given that the pipe is outside the roughness requirement for ISO 
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5167-2:2003, and the discharge coefficient at ReD = 107 would be expected from [5] to be 
0.84 % above the standard.  However, they still lack grid independence. 

Figure 1  % difference in C for CFD and C for experiment from ISO 5167-2:2003 
 

Nevertheless, it is interesting that the pressure distribution downstream of the orifice is 
different from that given by experiment or other computational work.  Both the experiments 
and the computations of Morrison et al. [6, 7] show that the pressure is constant from 6D 
downstream of the orifice, and NEL computations of the pressure recovery downstream of 
an orifice plate are shown in Figure 2, whereas Malalasekara [1] in Figures 13, 16 and 20 
shows a continuing recovery after 6D downstream of the orifice plate (there is also a 
surprising kink in the pressure distribution just downstream of the orifice plate in Figure 20).  
It appears that poor computation of the downstream recovery has little effect on the 
discharge coefficient.  It seems surprising that a thermowell 9D downstream would matter. 

 
Figure 2  Non-dimensionalised pressure profile through an orifice plate:  

NEL computation: ReD = 107 
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To establish whether the computations of flow through a standard orifice plate in [1] are grid-
independent, axisymmetric computations could be performed and compared with the three-
dimensional computations presented in [1]. 

 
3.2 Test cases 99985 – Tests 01 to 11 
 
The CFD and the experimental data are plotted in Figure 3.  Throughout the analysis here 
the orifice diameter has been used in the definition of discharge coefficient.  It might be 
better to calculate a diameter based on the open area at the orifice, but the conclusions 
would be the same. 
 
Both sets of CFD calculations show that there is very little effect of Reynolds number on the 
discharge coefficient.  The variation in the experimental data with Reynolds number is 
largely due to higher uncertainty at lower differential pressure.  The „long model‟ calculations 
are not grid-independent: the two sets differ by about 0.8%.  The „short model‟ calculations 
are much closer to grid independence, differing by about 0.2% on average.  NEL‟s 
expectation is that the difference between the „long model‟ and the „short model‟ calculations 
is due to lack of grid independence (especially for the „long model‟) rather than to the fact 
that the downstream thermowell and bend are modelled in the „long model‟.  For a correctly 
installed orifice plate Goldsmith et al. [8] showed that the effect of thermowells 1.63D to 
about 2D downstream on the measured flowrate was small, and that an oversized 
thermowell only 1.63D downstream of a plate had no effect at all.  It would, therefore, be 
expected that a thermowell 9D downstream of an orifice plate would have no effect at all.  
ISO 5167-2:2003 requires 7.3D before a downstream bend; the bend here is 18D from the 
orifice; again it should have no effect at all.  To demonstrate that the downstream effect 
captured in the long model is real it is necessary that the same grid be used until 8D 
downstream of the orifice plate and then two alternative downstream grids used and the 
discharge coefficients compared. 
 

Considering the three experimental points for which ReD is around 1.5  107, the highest of 
the points appears to have an error much larger than the stated uncertainty. 
 

 
Figure 3  Data for test cases 99985: for the CFD C is plotted, for the experiments C 
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3.3 Test cases 99950 Tests 01 to 11 
 
The CFD and the experimental data are plotted in Figure 4.  Except for the first computation 
the computed values of discharge coefficient vary little with Reynolds number.  The 
uncertainty of the experimental data is much higher than the values given in Table 12 of [1], 
where the uncertainty in measurements (presumably in differential pressure) is stated never 
to exceed 6 % (there are also errors in the calculated difference in error).  Table 12 appears 
inconsistent with Figure 10.  The discharge coefficients using Grid 2 and Grid 3 differ very 
little from each other; those using Grid 1 differ from the other two by a little over 2%. 
 

Figure 4  Data for test cases 99950: for the CFD C is plotted, for the experiments C 
 
 

4 CONCLUSIONS 
 

For the long model at any rate CFD grid independence has not been achieved; so the 
contention that the long model is required has not been proved. 
 
There is generally quite good agreement between experiment and CFD, but grid 
independence remains to be achieved. 
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